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Abstract-The two-dimensional elasticity problem of a circular disk with an embedded edge dis­
location is considered. Using Muskhelishvili's complex variable method and reducing the case under
consideration to a Hilbert problem, closed-form solutions are obtained. The dislocation solution
may be used as a Green's function to tackle general disk-crack cases. As an example, a disk
containing a slant crack subjected to point loads is studied, numerical procedures for calculating
the stress intensity factors for both internal and edge cracks are presented.

I. INTRODUCTION

The two-dimensional elasticity case of a circular disk with an embedded edge dislocation is
considered. The obtained dislocation solution can be used as a Green's function to tackle
general disk-crack cases by virtue of the dislocation pile-up and singular integral equation
techniques [e.g, see Erdogan et al. (1974) and Xu and Delale (1992)].

On this subject, Delale and Xu (1993) derived a similar solution using Mitchell's
general stress functions and the Fourier series technique. Earlier, Dundurs and Sendeckyj
(1965) considered an edge dislocation inside a circular inclusion in an infinite matrix. For
the special case, i.e. if we let the stiffness of the matrix be zero, Dundurs and Sendeckyj's
solution degenerates to that of a circular disk containing an edge dislocation. In both of
the above-mentioned solutions, however, the dislocation is located on the horizontal diam­
eter (x-axis). In Delale and Xu's study, they further applied the dislocation solution to
disk-crack cases. Due to the limit of the dislocation solutions, the crack is confined to a
straight one and has to lie on the horizontal diameter (x-axis).

In this paper, the author considers an edge dislocation embedded in a disk at an
arbitrary location. Therefore, the obtained dislocation solution can be used to tackle disk­
crack cases with more complicated crack geometry and arbitrary orientations.

Although the solution of the case to be considered can also be obtained by using
coordinate transformation of Delale and Xu'st or Dundurs and Sendeckyj's results, as a
different approach, Muskhelishvili's complex variable method is used. Further, a disk
containing a slant crack subjected to point forces is considered to illustrate the application
of the dislocation solution. The numerical procedures for calculating the stress intensity
factors for both internal and edge cracks are presented.

2. DISLOCATION SOLUTION

The geometry of the dislocation case, as shown in Fig. I, is a circular disk (r ~ R)
containing an edge dislocation with Burgers vector (b" bl' 0) at 2 0 = pe". The disk is free
from traction at r = R, the boundary condition may be written as,

t Only the solution for Burgers vector, hi = [0, h" OJ is obtained. In order to use the transformation method,
the solution for hi = [b" 0, OJ is also needed.
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Fig. I. A circular disk with an edge dislocation embedded at an arbitrary location.

O"rr+irr8 = 0, r = R, 0 ~ 8 ~ 2n. (1)

In Muskhelishvili's complex variable technique, the stresses and displacements for a two­
dimensional elasticity case may be expressed in terms of the Kolosov potentials, cI>(z) and
'fez), as follows,

with
cI>(z) = 47'(z), 'fez) = lj;'(z)

(2)

(3)

(4)

(5)

where the prime denotes derivative with respect to z, the overhead bar represents complex
conjugate and Re{} denotes taking the real part of the expression in the parentheses.
K = 3-4v for plane strain and K = (3 - v)/(1 + v) for generalized plane stress, with v being
the Poisson's ratio and f.l the shear modulus.

Combining (2) and (3) and then taking the complex conjugate yields

O"rr+irrO = cI>(z)+cI>(z)- :'[zcI>'(z)+'f(z)].
z

(6)

Due to the existence of the edge dislocation in the disk, the complex potentials are con­
structed in the following form,

(7)

(8)

where cI>o(z) and 'fo(z) are the stress functions for an edge dislocation embedded in an
infinite plane. cI>} (z) and 'f I (z) are the nonsingular part of the potentials, and they are
determined in such a way that the boundary conditions can be satisfied.

The solutions for an edge dislocation with Burgers vector (b" bn 0) at the point Zo =

pei
" in an infinite plane are known as (Muskhelishvili, 1953),
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and

A = J1(b, - ib<) .
n(1 +K)

From eqns (6), (7), (8), (9) and (10), we may obtain
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(9)

(10)

(11 )

where

In the usual manner (Milne-Thomson, 1960), we may extend <1>1 (z) to the region outside
the disk by defining

(14)

or equivalently,

(15)

From eqn (14), we may also write

(16)

Since <1> I (z) and If) (z) are holomorphic in the disk domain, from the definition in eqn (15),
<1» (z) should also be holomorphic outside the disk, including at infinity, where its principal
part is a complex constant.

Combining eqns (6) and (16), and imposing the boundary condition (12) it follows,

<1>t (t) - <1>1 (t) = get), t = R eiO
, 0 ~ e~ 2n (17)

where" +" and" -" represent approaching the boundary r = R from the outside and
inside of the circle, respectively. The solution of eqn (17) can be found using the Plemelj
formula

+f(:.) ~ fun, to obtain/(R 2
/:.), simply write R'/z for z in the expression of/(z).
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It turns out that
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1 f get)I]:>I(Z) = -2. -dt+c!.
m c t-z

(18)

(19)

where CI is a complex constant, and may be determined by substituting eqn (19) into (16)
and using the fact that '¥ 1(z) is holomorphic in the disk domain. By so doing, we may
obtain

f,l _ {1(brPcosa-b,psinrx)
Re t(l! - -. .

n(1+K)R2
(20)

Due to the fact that the complex potential 1]:>1 (z) can differ by an imaginary number without
causing any change of the stresses, we may simply let the imaginary part of CI be zero.

It may be noted that we may also determine CI by letting z = 0 in eqn (14) to obtain

(21)

then inserting eqn (\9) into (21), which gives the same result as in eqn (20).
Substituting eqn (19) to (16) yields '¥ 1(z) as below,

With the complex potentials given in eqns (9), (10), (19) and (22), the stress fields can be
readily obtained from (2) and (3).

The closed-form stress distributions in the dislocation-embedded disk have been found
and are given in the Appendix, and the displacement fields may then be obtained by using
the constitutive and kinematic equations.

3. DISK-CRACK PROBLEMS

The dislocation solution obtained above may be used as a Green's function to tackle
disk-crack cases using dislocation pile-up and singular integral equation techniques. Fol­
lowing the standard procedures (see Fig. 2), i.e. first, by superposition of the crack case

p

+

a. original case b. uncracked geometry c. perturbation case

Fig. 2. Superposition with uncracked geometry solution.
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under consideration with the uncracked geometry solution, the original crack problem may
be reduced to a perturbation case, in which the crack singular essence remains the same
but the loading is only the crack surface self-equilibrating pressure and shear stress, Next,
by integrating the dislocation solution, a singular integral equation may be generated. The
stress intensity factors of the crack are related to the unknown function in the integral
equation and thus can be formulated in terms of the solution of the singular integral
equation, which can then be solved by a collocation method in a very desirable accuracy.

In what follows, a circular disk (radius R) containing a slant radial crack (from p = ai,
to p = b l , e= IX) subjected to a pair of point forces, P, at e= 0 and e= n is considered
[see Fig. 2(a)]. Following the procedure, the original case is translated to its corresponding
perturbation case, the boundary conditions of which can be written as follows,

(foo(R, e) = rro(R, e) = 0, 0:( e:( 2n

rrO(P' e) = q(p) () = IX, al < P < b l

(23)

(24)

(25)

where p(p) = - (ff!iI(P, IX) and q(p) = - r'~I(p, IX), (fto and r,~) are hoop and shear stresses in
the uncracked geometry case (the problem with the same load and geometry except without
the crack), which are known for the case in discussion [e.g. see Muskhelishvili (1953)),

(f* IX _ 2P [(R - Pcos 1X)2 (p cos IX - R cos 21X) _ (R + P COSIX)2 (p cos IX + R cos 21X)
oo(p, ) - ') 'J ? ,') ')

n (R~ + p' - 2Rp cos IX)- (R- + p~ + 2Rp cos IX)'

COS 21X(R-pcOSIX) COS 21X(R+pcOSIX) ] P+ + --
R2+ p2 -2Rpcos IX R2+ p2 +2Rp cos IX nR

(26)

r* IX _ 2P [(R-PCOSIX)2(PSin31X-RSin21X) _ (R+PCOSIX)2(p sin31X+Rsin21X)
rO(P, ) - ')? 2 ') ') ')

n (R~+p--2RpcoslX) (R-+p-+2RpcoslX)'

sin 21X(R - p cos 0:) sin 21X(R + Pcos IX) ]
+ + (27)

2(R2+ p2 - 2Rp cos 0:) 2(R2+ p2 + 2Rp cos IX) .

Ifwe define

(28)

(29)

where u, and U\ are the Cartesian coordinate displacements, and x and yare Cartesian
coordinates of the point on the crack. y- and y- denote the point on the upper and lower
edges of the crack, respectively, and x,,] and Xh] are the projections of a l and b i on the x­
axis.

By integrating the dislocation solution and applying the boundary conditions (24) and
(25), we may obtain
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f
hl I, (f) cos rx - g, (t) sin rx fbi n(1 + K)
-------dt+ [/j(t)cosrx-gj(t)sinrx]kj(p,t)dt= 2 pep),

01 t-p 01 /lcosrx

(30)

and

fbl/,(f)Sinrx+g,(t)Cosrx fbi n(l+K)
dt + [/j (t) sin rx +gj (f) cos rx]k2 (p, t) df = 2 q(p),

01 t-p 01 /lcosrx

(31)

with

where

I,(t) =/(tcosrx), gj(t) =g(tcosrx). (34)

a. Infernal crack
If - R < aj < b l < R, e= rx, which means that no crack end stretches to the edge of

the disk, the crack is referred to as an internal radial crack. For such cases, k, (p, f) and
k 2 (p, t) are all Fredholm kernels, and the singularity only comes from the Cauchy kernel
terms. For an embedded crack, it follows,

f'a, 11 (t) dt = ° (35)

and

f' g, (t) dt = 0. (36)
a,

The singularity of the internal crack is known, and we may write

(37)

and

(38)

where F, (t) and G l (t) are continuous functions satisfying F j (a l ) #- 0, F, (b j ) #- 0,
Gj(al) #- 0, Gj(b,) #- 0.

The stress intensity ;actors of the crack can be calculated according to the conventional
definition, i.e.
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2/1 cos rx ,r----

= 1 lim ~2(p -a,) [f; (p) cos:x -9, (p) sin rx]
+ K p-.a1

and

2/1 cos :x I' J [f' ]= I 1m 2(p-a l ). I(P) slllrx+91 (p)cosrx
+K p-at

Introducing the foHowing transformations in eqns (30), (31), (35) and (36),

and letting

12(r) =11(t),92(r) =91(t), P2(S) =p(p), Q2(S) =q(p)

K, (s, r) = k l (p, t), K2 (s, r) = k 2 (p, t)

we obtain,

f
l j~(r)cosrx-92(r)sin:x bl -al fl .

- _ dr+-
2
- Lf2(r)cosrx-92(r)Slllrx]KI(s,r)dr

_I r s _I
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(39)

(40)

(41)

(42)

(43)

(44)

n(l +K)
= P2(s), (-I <s< I) (45)

2/1 cos rx

n(l+K)
= 2 Q2(S), (-I <s< I) (46)

/1 cos rx
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Accordingly, we may write

and
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(48)

(49)

(50)

Using the Labatto-Chebyshev integration method [see Erdogan and Gupta (1972), and
Ioakimidas and Theocaris (1980)], eqns (45)-(48) can be discretized into two sets of N
simultaneous algebraic equations:

set I :

" [, [cosIXF2 (rJ-sinIXG2 (rJ] ,hI -a j . ]
i~1 Ai r

i
-SJ + 1-;-2- K j (si' rJ [cos IXF2 (rJ - Slll IXG 2 (ri)]

n(I+K)
= 2j1 cos IX P2 (sJ, (j=1,2, ... ,n-l) (51)

n

L {Jei[cosIXF2 (ri)-sinIXG2 (rJ]} = 0;
;= 1

set 2:

" [, [sinIXF2 (r;)+cosIXG2 (ri)] ,hj-aj. ]
i~1 I'i r

i
-Si + l- i - 2-K2 (Si' rJ [Slll IXF2 (ri) +COS IXG 2 (rJ]

n(1 +K)
= q7(S/,), (j'= 1,2, ... ,n-l) (52)

2j1cosex - .
n

L V;[sin IXF2 (rJ + cos IXG 2 (rJ]} = °
i= 1

with weight coefficients }_jS as

when i = I or n

(53)

when i = 2,3, ... , n - 1

and r; and si satisfying

T,,_j (s) = 0, j = 1,2,3, __ ., n-I

Un_I (ri) =0, i= 1,2,3, ... ,n-2andr= ±I (54)

where T,,_, (x) and U,,_/x) are Chebyshev polynomials of first and second kinds, respec­
tively.
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The stress intensity factors of the crack can be calculated by
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(55)

(56)

(57)

(58)

b. Edge crack
If one of the crack ends extends to the edge of the disk, e.g. if - R < a I < b 1 = R, the

crack becomes an edge crack. Under such circumstances, the displacement single-valuedness
conditions (47) and (48) do not hold true. It can be shown [see Xu and Delale (1992)] that
the density functions II (t) and gl (t) can be written as

II (t) = ~, ( b )0l < t < 1

.,j t-al

By introducing the following transformations,

p = (bl-al)s+b 1 , when a l < P < bl, -1 <s < 0

t=(bl-al)r+bj, when 0, <t<bl , -1 <t<O

and letting

12(1) = II (t), g2(t) = g\ (t), P2(S) = pep), Q2(S) = q(p)

K I (s, r) = k I (p, t), K 2 (s, 1) = k 2 (p, t)

eqns (30), (31), (59) and (60) become

f
o 17(r)cosiX-g7(t)sinlX fO .
-1 - r-s- dr+(bl-0 1) -I [/2(t)COslX-g2(r)sllllX]K I (s,t)dr

n(1 +K)
= ") P2(S), (-I <s<O)

~J1. cos IX

f
o 12(r)sinlX+g2(t)cosC( fO.
-I t-S dr+(b,-al) _I Lf2(r) sm:x+g2(r) COS o:]K2 (s, r) dr

n(1 +K)
=") Q2(S), (-I<s<O)

'-II cos IX

12(r) = ~2(r), (-1 < r < 0)
yl+r

and

(59)

(60)

(61)

(62)

(63)

(64)
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(65)

Referring to Gupta and Erdogan (1974), we may extend the definition of 12(t) and 92(t) to
[0,1) as an even continuation, as follows,

F(r) F(r)
12(r) = j ,F2 (r) = j-' withF(r) = F( -r), (-1 < r < 1)

(I-r2 ) l-r

G(r) G(r)
92(r) = , G2(r) = -==, withG(r) = G( -r), (-1 < r < 1).

j(l_r2
) jl-r

Discretizing eqns (62) and (63) in a similar manner yields

(66)

(67)

n(l +K)
=~~-q2(SJ (j=n+2, ... ,2n+l) (69)

2J1 cos rt.

where

. n
I., = 2n+ l' T2n+ I (sJ = 0, U2n (r,) = O.

The stress intensity factors at a j can be calculated by

2J1cOS rt. .
= 1 J(b,-a,)[cosrt.F(-I)-Slllrt.G(-I)]

+K

and

2J1 cos rt.
= 1 ... /(b j -ad [sinrt.F(-l)+cosrt.G(-I)].+K v

(70)

(71 )

(72)

4. RESULTS AND DISCUSSIONS

Normalized stress intensity factors of a slant internal disk-crack subjected to uniform
crack surface pressure q and shear stress r o for different crack lengths are calculated and
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Nonnalized crack length aIR
Fig. 3. Stress intensity factors of an internal radial crack in a circular disk subjected to uniform

crack surface pressure and shear stress.

given in Fig. 3. For this case, Bowie et at. (1970) and Tweed et at. (1972) have found mode
I stress intensity factors. It may be seen in Fig. 3 that, for the comparable part, the present
results are almost exactly the same as theirs. Normalized stress intensity factors for slant
internal cracks (hi = -a] = a, central crack) and slant edge cracks (hi = R, hI -al = 1)
under point forces for various crack lengths and different inclination angles rJ. are computed
and presented in Figs 4-7. For rJ. = 0° and rJ. = 90°, the present results match those of Xu
and Delale (1992) exactly.

Finally, it may be noted that for a linear crack in the isotropic material, such as the
example discussed in this work, there is no mode coupling, i.e. k I is only due to the crack
surface pressure, and k 2 is only induced by the shear stress. In fact, we are able to decompose
(or decouple) the integral equations (30) and (31) by defining

(73)

(74)

with (35) and (36), we may then obtain

kl(a)
(P1R)fI

2rrrTT"J"T'T"1rTT'rrT"T'T'1-rr-rTTrrT,-nr-rr,..,..,.TT'1""'-"'"

1.5

0.5 L-~~-~.

o C-------
-0.5

-1 L..w...............................L..J..Jo...I...I..JU-I-.L..LL..............L..L..U-I-.L.u.-LJ.-I'-LL.L.Cl

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized crack length aIR

Fig. 4. Stress intensity factors (mode I) of a slant internal crack in a circular disk subjected to point
forces.
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k2(a)
(PIRrra
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0.8 a=45°

0.6

0.4

0.2

a=Q0 and a=90o

0

-0.20.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
NonnaIized crack length aIR

Fig. 5. Stress intensity factors (mode II) of a slant internal crack in a circular disk subjected to point
forces.
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Fig. 6. Stress intensity factors (mode I) of a slant edge crack in circular disk subjected to point
forces.

k2(at)
(PIR)(T

1.5 r-r--r--r-,r-r""'-"T""O--r--'-r-T-,-,.-r-r--r--r-,r-1

2

0.5
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-0.5
0
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0.4 0.8 1.2 1.6
Nonnalized edge crack length IIR

Fig. 7. Stress intensity factors (mode II) of a slant edge crack in a circular disk subjected to point
forces.
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The equations (75) and (76) are not related and are completely independent. It can be
readily shown that XI (t) and Y I (t) are nothing but the dislocation density functions in the
directions tangential and normal to the crack, respectively.
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APPENDIX

The stress fields of a circular disk of radius, R, containing an edge dislocation at I' = 1', 0 = x, with Burgers
vector (b" b,., 0) are found as below,
b, #- 0, b,. = 0,

/lb, {2p sin ,x -rsin 0+ I' si.n (,x -2t1) -2pR' sin x+rp' sin tI- pR' sin (x- 2t1)
cr,., (I', 0) = --- " . '.-,--- + , , --,---'------'---

n(1+K) r-+p--2rpcos(O-c;) R4 +r-p--2R'rpcos(tI-,c;)

31'1" sin (2x -0) - 31'1" sin x-I" sin (3x - 2t1) +,..' sin tI 21' sin x
-+--

[1" +1" - 21'1' cos (tI- x)]' R'

R4p(R' - 1" - 21") sin (c;-2t1) - R'rp'(4r' + 5R' +21") sin (2x-tl)

[R4+ 1" 1" -2rpR' cos (0- x)]'

R' 1" (21" + R') sin (3x - 20) +p(2R" + 21'41" + 81" R4+ 1" 1" R' + 21" 1'4) sin c;

[R4+1"1" -2rpR' cos (tI-x)]'

r(4R" +41" 1" R' + 1'41" _21" R4 + 21'4 R') sin ()
+--'-----'-----

[R4+ 1" 1" - 2rpR' cos (11- ,x)]'

2R' (R' - p')[pR6 sin (x -20) - 1'4 1" sin (3c;-2t1) + 1" p'(3R' +1") sin (2x -tl)l

[R 4 + 1" 1" - 2rpR' cos (0 -c;)l'

_ 2R'(R' - p')[R4 r(3p' +R') sinO- 3R' PI" (R' +1") sin 'C;l}
[R4+1"1" -2rpR' cos (tI-o:)j'

SAS 32: l-E

(A.I)
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O
pb, {2Psin a - 3r sin 0 - p sin (a - 20) ~ 2pR' sin a+ 3rp' sin 0+ pR' sin ('l - 20)

(JOfl(r, .) = --- + -'---------'----'--'----'--------'-
re(1+K) r'+p'-2rpcos(0-a) R4+r' p'-2R'rpcos(0-a)

3rp' sin (2'l - 0) - 3pr' sin a - p3 sin (3a - 20) + r3sin 0 2p sin'l
+ +--

[r'+p'-2rpcos(0-,'l)]' R'

R4peR' - p' +2r') sin (a-20) + R'rp'(4r' +3R' -2p') sin (2a -0)
+-'------'--'----'----'------'-'-----------'-'-----'------'-

[R4+r' p' -2rpR' cos (O-a)]'

R' pJ (R' - 2r') sin (3'l _ 20) - p(2R6 + 2r4p' + 8r' R4- r' p' R' - 2r' p4) sin a
+-'------------'-'-------'---'------'--------'----

[R4+r' p' -2rpR' cos (O-a)]'

r(4R 6 +4p' r' R' _ p4 r' +2p' R4- 2p4R') sin 0
+'------'------'-------'-----'-----'----­

[R4+r'p' -2rpR' cos (O-a)f

2R'(R' - p')[pR6 sin (a-20) - r4p' sin (3a -20) +r' p'(3R' +p') sin (2'l-0)]
+-'------'---'--"-----'-----'--------'--'---'-------'---'----'------'---'-----'----'-'-

[R4+ r' p' - 2rpR' cos (0 - a)]'

+ 2R'(R' - p')[rR4(3p' + R') sin 0- 3R' pr'(R' +p') sin a]}

[R4+r' p' - 2rpR' cos (O-a)]'

O
pb, {rcosO-PCOS(a-20) pR'cos('l-20)-rp'cosO

T,fI(r, ) = --- , , +",
re(l +K) r' + P' -2rp cos (O-a) R4+rP' - 2R'rp cos (O-a)

r' cos 0+ 3rp' cos (2a - 0) - 3pr' cos a - p' cos (3a - 20)
+--------'-------''-----'-----'---------'--'-------'-

[r' + p' - 2rp cos (O-a)]'

R4pcp' - R') cos (a-28) + R'rp' (R' + 2p') cos (2a-0)

[R4+r' p' -2rpR' cos (0- 'l)]'

- p' R4cos (3a- 20) +rp'(r' p' +2R4- 2R' p') cos 0-3r' R'p' cos a

[R4+r'p' -2rpR' cos (O-'l)]'

2R'(R' - p'l[ - pR 6 cos (a-20) _r4p' cos (3a-20) +r' p'(3R' + p') cos (2'l- 0)]

[R4+r2p' -2rpR' cos (O-a)]'

_ 2R'(R' - p')[R4r(3p' + R') cos 0-3R'pr'(R' + p') cos 'l]}

[R 4 + r' p' -2rpR' cos (O-'l)]'

b, = 0, b,. # 0,

(A.2)

(A.3)

O
_~ {rCOSO-2Pcosa+PcOS(a-20)

(J,.,.(r, )-
re(I+K) r'+p'-2rpcos(0-a)

2pR' cos rt. - p' rcos 0- pR' cos (a-20)

+ R4+ r' p' - 2R'rp cos (8-rt.)

3pr' cos a - r' cos 0 - 3rp' cos (2a - 0) + pJ cos (J,'l - 20)

[r' +p' - 2rp cos (0 - a)]'

2pcosrt.

R'

pR 4 (p' - R' + 2r') cos (rt. - 28) - R'rp'(4r' + 5R' +2p') cos (2rt. -0)

+. [R4+r'p'-2rpR'cos(0-rt.)]'

R' p' (2r' + R') cos (3a- 20) + p(2R6 + 2r4 p' + 8r' R4+ r' p' R' +2r' p4) cos a
+'----'---------'--'---------'---'------'---------'-------'---'---'--

[R4+r' p' - 2rpR' cos (O-a)f

r(4R6 +4p'r' R' + p4 r' -2p' R4+2p4 R') cos 0

[R 4 +r'p' -2rpR' cos (O-a)]'

2R'(R' - p'l[pR 6 cos (rt.-20) +r4 p' cos (3a- 20) -r' p' (3R' + p') cos (2'l - 0)]

[R4 +r'p'- 2rpR' cos (O-rt.)]'

2R4 r(R' - p')[3pr(R' + p') cos a- R'(3p' + R') cos 0]

[R 4 +r' p' - 2rpR' cos (0 -rt.)]'
(AA)



Green's function for general disk-crack problems

/lh, preas 11- 2pcos:x ~ p cos (:x- 28) 2pR' cos:x- 3rp' cos 11+ pR' cos (x ~28)
"",,(r, 8) ~ --.-) " +" ,

n(1 + K) l r- + p- - 2rp cos ((I~:x) R4+r p- ~ 2R-rp cos ((I~:x)

77

~ 3p' rcos (2x- (I) + 3pr' cos:x+ p' cos (3:x ~21i) -r' cos Ii
+

[r' +p' ~2rpcos(O~:x))'

2pcos x

R'

R4peR' ~ p' +2r') cos (:x~2()) + R' rp' (-4r' - 3R' + 2p') cos (2:x- (I)+ --'-'---'----'---'-_.-'----'--'-------'--'---'---'-
[R4+r'p' ~2rpR' cos (O~x)]'

p' R'(2r' ~ R') cos (3x - 211) + p(2R" + 2r4p' + 8r' R4 - r' p' R' - 2r' p4) cos:x

+ [R4+r'p'-2rpR'cos(lJ-x))'

r( -4R" -4p' r' R' + p4 r' -2p' R 4+ 2p4R') cos II+ .._--'---'--
[R4+r' p' ~2rpR' cos (0- x))'

2R'(R' - p')[pR" cos (:x~ 20) +r4p' cos (3:x~ 211) -r' p' (3R' + p') cos (2x -II)]
+

[R4+ r' p' ~ 2rpR' cos (O-:x)]'

+ 2R4r(R' - p')[ - R' (3p' + R') cos 11+ 3pr(R' + p') cos x] }

[R4+ r' p' -2rpR' cos (O~ ,x)]'
(A.S)

/lb,. {r sin () + p sin (,x ~ 20)
r,,,(r, II) = -~.-

n(1+K) r'+p'~2rpcos(O-x)

pR' sin (:x- 20) +rp' sin 0

R 4+r' p' ~ 2R' rp cos (()~:x)

r' sinO+3rp' sin (2x -0) ~3pr' sin:x~p' sin (3,x-20)
+----'---'----

[r' +p' ~2rpcos(lI~x))'

R4p(R' ~ p') sin (x ~2{)) + R' rp'(R' + 2p') sin (2x~ 0)

[R4+r'p' ~2rpR' cos (O-xW

~ p' R 4 sin (3x - 20) + rp' (r' p' + 2R4
- 2R' p') sin II ~ 3r' R' p' sin x

[R 4 + r' p' ~2rpR' cos (0- ,x)]'

2R'(R' - p')[pR" sin (x ~ 211) - r4 p' sin (3x ~211) + r'p'(3R' + p') sin (2:x -0)]

[R4+r' p' - 2rpR' cos (8 -:x)]'

2R4 r(R' - p')[R' (3p' + R') sin O~ 3pr(R' + p') sin :x]

[R 4 + r' p' ~ 2rpR' cos (IJ-:x)]'
(A.6)


